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Abstract - The elastic response of a doubly-curved cross-ply laminated panel subject to mechanical
loading and temperature vari<ltion is investigated. The three-dimensional equilibrium equations.
expressed in terms of displacements. are reduced to a system of coupled ordinary differential
equations. which are then solved using the power series method. Numerical results are presented
for a traction loaded saddle-shape shell and for a heated spherical panel.

INTRODUCTION

When exact solutions to three-dimensional elasticity theory are available. they are valuable
not only in their own right. but also as useful benchmarks for verifying mathematical
procedures leading to approximate solutions. and for assessing the validity of approximate
formulations (e.g. beam. plate or shell theories). In the case of bidirectional composites and
sandwich plates. Pagano (1970) developed an exact solution. and compared it with a
solution based on classical laminated plate theory. Srinivas and Rao (1970) established an
exact analysis for bending. vibration and buckling of Ilatlaminates. More recently. an exact
three-dimensional thermoelasticity solution for a cross-ply cylindrical panel was obtained
by Huang and Tauchert (1991) using the power series method. A similar procedure is
employed here to derive the thermoe[asticity solution for a doubly-curved cross-ply lami
nate.

The laminate under consideration consists of N layers of a unidirectionally reinforced
material (Fig. I) with each layer taken to be macroscopically homogeneous and orthotropic.
The radii of curvature of the middle surface in the Or and OJ-directions. denoted by R 2 and

Fig. I. Doubly-curved laminated panel.
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R; (= R,+Rd ). are taken to be constant. The coordinate R represents the radius of
curvature in the e,-direction of an arbitrary point in the shell; thus R = R, if the point lies
on the middle surface. The middle surface of the doubly-curved panel is assumed to have
a Euclidean geometry. i.e. (ds)' = (R,dO,)'+(R;dO.d'. It is important to mention that
this metric equation leads to an approximate formulation in the case of shallow doubly
curved surfaces. Hereafter. coordinates (R. 0> 0 J) will be also referred to as i-l:oordinates
U= 1.2.3).

GOVERNI:"G EQUATIONS

In the following analysis. the non-dimensional quantities

(I)

are employed. Here l', is the component of displacement in the i-coordinate direction.
The stress-strain·-temperature relations for each orthotropic lamina. written in con

tracted notation (al = all. a2 = 0',> ... • aJ = 0'2). etc.) an.:

(2)

where c', denote the elastic moduli. 'X, arc the codlicients of thermal expansion. T is the
temperature rise from the strcss-free state; the repeated index implies summation.

The cquilibriulll equations are (Huang. I\NO):

2 I I
(f I 2. I + (f I , + (J I , + 0' ., • + (J • I \ = 0

I' r+rd I' ••.• r+rd -.

I 2 1
(f I \ I + (T 1\+. - (J I \ + (f • \ • + (f \ \. \ = 0

. I' I' + I'd I' -. - I' + I'd

in which a comma denotes dillcrentiation.
The strain displacement relationships are

(3)

(4)

By substituting eqns (2) and (4) into eqn (3). the equilibrium equations become

COb C" . (I I)
C I 1111 I I + ." III ,,+ ( ... )", Ill. \) + C I I .. + . Ill. I

, r .. - r+rd" I' I'+rd

I (C I ' - C" C" + ChI.) I+ (C ,+ C )- /I. ,+ ~..:_. __.....- - -- 11",
I. hh I' .. I. 1'+1',1 I' I'

CI)+CSS . (Cll-e21 _ C\1+C~j) I. = .1'(1' 0,.0 )+ ..-._...._-- Il, I I + 11 \. I • - \

r+I'd" r r+rc\ 1'+1',1
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where

r IT TIT T!(r,(},.O\) = a, 1+- (al-a,)+ --(ai-ad• - . r • r+rd -

in which the quantities ar are dclined by

at = C'/~J T, (i,J = 1,2,3).

(5)

(6)

(7)

T1IERMOELASTIC ANALYSIS

The laminate is taken to be simply supported in such a manner that all edges are fixed
against tangential displacements but remain free to translate in the normal (in-plane)
direction, in which case:

(8)

Since most loadings can be represented in Fourier series form. the boundary conditions
for the inner (r = r,) and outer (r = r.,) lateral surfaces are expressed as:

at r=r,: all=qhsin!X02sin{Wlo a,2=Q2icos202sin{WJ

0' I) = q). si n !XO 2 cos pO) ;

at r = ro : 0'11 = qlo sin 20 2 sin POlo al2 = q20 cos !X02 sin pO)

0' I 3 = q 30 sin !XO 2 cos pO) (9)

where 2 = m1T.!(20 2) and p = m1T./(20). with m and tI considered arbitrary. Similarly, the
temperature variation is described by
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The displacements are taken in the form:

III(r,();.O) = el(r) sin lO, sin [30),

11,(1',0;. OJ) = [',(I') cos lO, sin [30),

1I)(r,O"OJ) = C')(r) sin lO,COS[30,.

( 10)

(II)

The assumed displacement field (II) satisfies all of the edge conditions (8).
By substituting eqns (II) into eqns (5), the partial differential equations are reduced

to the following ordinary differential equations in the variable 1':

CII r(rV'I)' + [C II1]rC'1 + [ - C" -l'C6b + (C;: + C I J- 2C'J)r- (C)J + !f'C,)(r)' ] C I

- [:x(C 1: + C 66 )]rU': -:x[ - C:: - C 66 + (C 1 : - C :J)i] U: - [fJ(C I J + Css)i]rU'J

-!J[(CI,-C:,}r-(CJ,+Css)(i):]UJ = F(r)

[:x(CI: + CH)]rU'1 + x[C:: + C 06 + (C ,J + Co)i]U I

+ Cor(rU',)' + [C6br ]rU': [C", +x:C" +c",.r+ WC~~(i)']U"

-[X/J(C,1+CH )P]U1= G(r)

[fJ(C 1\ + C ss )1]rU'1 + {{[(Cn + C,<lr+ (e \ + C,)(i)'IU,

- [l!f(C,\ + CH)iju, + C"r(rU'd' + [C"r]rU'\

[x'CI4 +C"f+(C,,+!f'C,.)(r)'IU, = 1/(1') (12)

in which ( )' == d( )/dr, and

I'
r=

r+rJ

F(r) = I"T1• 1r. 1 +rTI(r.I-r.,)+rTlr(LI-r.J)

G(r) = 7.rT1r.", H(r) = /JrrTlr. J

r.,=C,j:Xj, (i,j=I,2,3). (13 )

The value of rJ' the difference of the radii of curvature in the 0,,- and OJ-directions,
will dicta te the form of solution of the ditrerential eqns (12).

Case (I) : Ir/rdl < I.
By letting

W,(r) = V,(r), Wi+J(r) = rV;(r) = rW;(r), (i = 1,2,3)

eqns (12) can be written in the form:

rW;(r) = A,,(r) W,(r) + B,(r), U,j = 1-6).

( 14)

( 15)

If all the coefficients A,,(r) arc analytic at I' = 0, then there exists a set of homogeneous
solutions of the above equations, namely (lnce. 1956; Hartman, 1964):

W,(r) = r'V,(r), (i = 1-6),

where s is a certain constant, and V,(r) is analytic at the origin,

( 16)
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Note that the expressions enclosed in the brackets of eqns (12) are analytic at r = O.
as is each function AiJ(r) in eqns (15). Therefore. at least one homogeneous solution ofeqns
(12) can be represented in the general form:

y:;

[U,(r). U:(r). U3(r)] = rP L [a",. b",. c",]r"'.
1ft- 0,1.2

(17)

Substituting (17) into the homogeneous form of (12). and equating the coefficients of the
smallest power in each of the resulting equations. leads to the following system ofequations:

(CIIp2_tX:C66-Cdao+:x[C22+C66-P(CI2+C66)Jbo = 0

tX[C2: + C66 +P(C I2 + C66 )]aO+ (C66p 2 -:x2Cn - C66 )bo = 0

[p2C55 -tX2CH]c0 = o. (18)

Nonzero values of the coefficients al). hI) and Co can exist only if the determinant of eqns
(18) is zero. The resulting equation is the indicial equation of the differential equations (12).
namely

(p 2C 55 -tX 2CH )' (C II C66P~ +p2[:x 2(C12 + C66 )2 - C I' (cc 2C 22 + C66)

-C66(iX2C6I.+Cd]+CnC66(:x2_1)2) = O. (19)

Six roots (counting multiplicity) arc expected from eqn (19). Upon substituting the indicial
roots P, back into eqns (18). two arbitrary coefficients can be cxpressed in terms of the
third. provided that one is nonzero.

To avoid mathem~ltical dilliculties. only those cases in which real roots of the indicial
equations arc distinct and do not dilfer from e.tch other by an integer arc considered. The
successive coellicients a",. h", and em (III ~ I) in eqn (17) can be determined from the
recursion equations [sec Huang and Tauchert (1991)1.

The general homogeneolls solution of eqns (12). denoted by U~. U~ and U~. can be
written as

6 'Xl

[U~(r). U~(r). U~(r)] = L eirPi L [aim.bim.eim]rm
I-I m-O.'

(20)

where Pi arc the roots of the indicial eqn (19). The unknown coefficients ej are determined
from the traction conditions prescribed on the shell's lateral surfaces and the continuity
requirements for adjacent laminae.

Next. consider the particular solution of eqns (12). It is assumed that the right-hand
sides of eqns (12) can be expressed in the polynomial form:

2>

[F(r).G(r). H(r)] = r' L [J:.g".h"V.
n_ 0.1.2

Particular solutions U~. U~ and U~ of eqns (12) are (Hildebrand. 1976):

2>

[UHr). U~(r). U~(r)] = r' L [a". hit, c,,]r"
n .. 0.1.2

(21)

(22)

provided that P, is not equal to (s+1l).

Equating the coefficients of power ,H" of eqns (12) to zero yields a set of equations
for a". hit and c•• from which the particular solutions can be obtained.

For an N-Iayer laminate. there are a total of 6N undetermined coefficients. These can
be determined by satisfying six surface traction conditions (involving 0"11. 0"12. 0"1 J). and
satisfying 6(N - I) interface continuity requirements for 0"1" 0"12. 0"1 h U" U2 and U J.
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Case (2): IrrJI > I.

Substitution of p = I rand /i = I (I + rdP) into eqns ( 12) gives for this case:

C11P(pC'I)' - (C l/iJpC + (- c:: - x:C"" + (C, + C, - 2(':,)/1 - (e, + f{C,)(li)'jU
I

+ (x(C, + Colll'C': - J:( - C" - Co + (('I: - C:, )jijC: + [(l(C 11 + C")li1pC',

-IJ[(C, -C:d/i -(C;l+C,)(/i)'jC , = F(p)

- (:x( C Ie + C hh )jpC'1 + J:(C" + C h" + (C: 1 + Ch" )Ii] C 1+ Co(,p( pC':)' - (ChO/ijpC ':

- (C" + x:C:, + C.,,!i + /rC.( Ii) :jC: - (xll(C:, +C.)!i1C, = G(p)

- [{J( C 1 } + C, )ji]p[ "I - /1(( C" + C,)!' + (ell + C,)( /i)'WI - (J:/J( C:l + C.)!i] C:

+C,p(p[",j'-(C'I'll'C,-[X:C1+C'IH-(C,+/I:C,)(ii):jC, = H(p), (23)

in which,

(24)

The coeflieients within hrackets in eqns (23) are analytic at p = 0, and the corresponding
power series expressions arc conV<:rgent for IrdPI < I (i.e. Ir!r,d > I).

The homogeneous solutions of (23) an: of the form

[C(p), (/,(p). Ud!I)1 = pI' I [am.h",.c",]p"'.
fir - 0, I ~

Conseq uently. the honl\)geneous snlutinns Df eqns ( 12) can be e.xpressed as

[CI(r). U,(r), V,(r)] = r" I (a""h",.c",]r '"
", 0, l, ~

(25)

(26)

Substituting eqns (26) into el/ns (12), and setting the eodlicients of the highest power (r")

equal to zero, yields the following equations:

(C111'(1'+ I) -x'C"" -- We;; - C 1 , + C)- C" - 2C" - C ;Ja"

+:x( -p(C I , + c.,,,) - C I , + C" +C, \+C""lh"

+II( -p(C 1 , + C,,) - Ct 1 + C,1 +C, + C,5]c" = 0

x(p(C t , + C.,,,) + C" + C" + 2(',,,,la,,

+ [C",,p(p + I) - x'C" - /1'C. 1 - 2('""]h,, - :x/1(C'1 + ClJ)c" = 0

ml'(C 11 +C 55 ) + C,; +e" +2C,]a ll

- J:/I( C, \ + C •.lh" + (C"p( {I + I) - J:'e. l -II'C"]c,, = O. (27)

The nonvanishing eodlieicnts a". h" and c" can exist only if the determinant of eqns
(27) is zero. A closed form solution to the sixth-order determinant equation is available
(see Appendix). The successivc codncients a",. h", and <,,, (m ~ I) can be obtained by
equating the coetlicients of power (r" "') to zcro. The resulting general homogeneous
solutions can be written as:
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6 '"
[U~(r). U~(r). U~(r)] = LejrP

' L [a,m. b,m' C,m]r- m.
t.l ", .. O.t
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(28)

It is presumed that the right-hand sides ofeqns (12) can be expressed by the following
polynomials:

'"[F(r). G(r). H(r)] = rq L [f,..9n. hn]r -n.
,,- 0.1.2

The particular solution takes the form

x

[U~(r). U~(r). U~(r)] = rq L [an. bn•cnJr-n
n=O.I.::

(29)

(30)

if roots Pi of the indicial equation are not equal to (q-n). Coefficients an' hnand en can be
determined by the procedure described earlier.

In the case of a spherical panel (a special class of doubly-curved shells) ro is equal to
zero. and eqns (12) reduce to a system of equi-dimensional (or Cauchy-Euler) differential
equations. The homogeneous solutions (28) then take the form

6

[~(r). U~(r). U~(r)] = Lt'jrP'[a/O. b/O. c/O].
i-I

(31 )

No. or terms

60
70
80
90

100

NUMERICAL EXAMPLES

The elasticity solution derived above has been used to calculate the response of
graphite/epoxy doubly-curved panels h:lving dimensions h =0.05R:: and 0:; = 0.1 =
0.25. Three-layer regular cross-ply laminates with fiber <trrangement [0 '/90'/01 arc con
sidered. The thermoelastic properties of an orthotropic lamina with tiber reinforcement
in the 2-direction arc taken to be:

E,= 10.3Eo• E:; = 181.1Eo• E) = 10.3Eo•

G I:; = 7.17Eo. GI ) = 2.39Eo• G2J =7.17Eo•

\':;1 = 0.28. VlJ =0.28. VI) = 0.28.

It I = 22.5Ito. a:; =0.02ao• C() = 22.5Ito•

in which standard notation has been employed. and where Eo and Ito are reference values.
First. consider the response of a saddle-shape panel for which R) = - 2R:;. subject to

the surface tractions described by eqns (9). with qfj = qln = q/2. q:;i = q:;o = qJi = q)o = 0
and m = II = I. Table I illustrates the convergence rate of the power series in eqns (20) for
this example. It is seen that at least 80 terms must be retained in (20) in order to obtain a
rdatively accurate value of the center deflection It 1(1.0:;.0). The center deflection (II t>

Tabk I. Convergence rale or power series ror
elasticity solution.

(Ir =O.OSR:. 6: = e, =0.25. R J = -2R:)

u,(1.6:.e J )

(q/E.)

0.13872
-0.22832

0.50417
0.50348
0.50348
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Fig. 2. Reponse of a three-layer doubly-curved laminate with Ir = 0.05R ,. e, = e J = 0.25.
R, = -2R,.



Thermal stresses in laminates

0.5

.t:.
"...
a:: 0.0

I
~

-0.5 'r-~-+~-...---r

-0.5 0.0 0.5 1.0

u,lr, 8 2 , 8 3 1/aoT,

lal

0.5

/
0.5

{
.t:. .t:.

("-"- ...
;: 0.0 a:: 0.0

I I

~
~

-0.5 -0.5

-240 -120 0 120 240 -220 0 220 440

(1"22Ir,82.831/EoQo T, (1"33 Ir• 8 2, 8 31/EoQo T1

Ibl leI

Fig. 3. Thermocl"slic response of" three-klyer sphericilll"miniitc with h = 0.05R 2• 8 2 = 8 J = 0.25.
R, = R 2•
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and stress (a2 2' a 12, 0' JJ and 0' I J) distributions in the thickness direction, found using 90
terms in the power series. are shown in Fig. 2(a)-(e).

Next. consider the thermoelastic response of a spherical laminate (R J = R2 ) to the
temperature variation

The calculated. center deflection and stress (0'22.0'33) distributions through the laminate
thickness are shown in Fig. 3(a)-(c), respectively.

CONCLUDING REMARKS

The power series method has been used to construct an exact three-dimensional
thermoelasticity solution for a doubly-curved cross-ply panel. Solutions such as this have
value as benchmarks for verifying mathematical procedures leading to approximate solu
tions. and are useful for assessing the validity of laminated shell theories. A comparison of
results obtained using a recently developed shear-deformation shell theory. with those
based upon the present thermoelasticity formulation. will be reported in the near future.
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-\PPE:-';DI:\: SOLUTIO:-'; TO THE CH.-\RACTERISTIC EQl'ATIO;-; OF EQ;-;S 127}

Let x = pi P+ I) and rewnte eqns (27) in the following form:

[

C ,x+k"

~(C,,+C")p+k,,

{I(c, ,+ C, "p + k , ,

-~(C,~+C")p+k,,

C"x+k"

k"

Sctting the determinant of the above set of equations to zero gives:

In which

('I = C I1 C""C..,(,.

,'. = C, ,C"k:: + C"C"k" + C"C,.k" + ~~C,dC,~ + (',.h) + (I'C."(C,, + C,,)'.

<', = C"k "k" + ('"k "k n +C"k"k" - ('"k;, - ('"k I ,k" - C'Ok, Ik" --2~{I(C" + C,.• )(C" + C,,)k,,

+ ~'(C" + ('")'k,, +{I'«('" + (',,)'k n.

('" ~. k, ,k "k " +k "k , ,k" +k, ,k , ,k " - k, ,k;, - k , ,k" k " -k"k, ,k ".

(AI)

Thc standard solution of etJn (AI) is availahle (Shelhy. 1'i6S) Th~' wot p can he ohlallled hy sol\'lIl): the
qlladratic L'qualionl'lP +- I) = x.


