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Abstract— The elastic response of a doubly-curved cross-ply laminated panel subject to mechanical
loading and temperature variation is investigated. The three-dimensional equilibrium equations,
expressed in terms of displacements, are reduced to a system of coupled ordinary differential
equations, which are then solved using the power series method. Numerical results are presented
for a traction loaded saddle-shape shell and for & heated spherical panel.

INTRODUCTION

When exact solutions to three-dimensional elasticity theory are available, they arc valuable
not only in their own right, but also as uscful benchmarks for verifying mathematical
procedures leading to approximate solutions, and for assessing the validity of approximate
formulations (c.g. beam, plate or shell theories). In the case of bidirectional composites and
sandwich plates, Pagano (1970) developed an exact solution, and compared it with a
solution based on classical laminated plate theory. Srinivas and Rao (1970) cstablished an
exact analysis for bending, vibration and buckling of flat laminates. More recently, an exact
three-dimensional thermoclasticity solution for a cross-ply cylindrical panel was obtained
by Huang and Tauchert (1991) using the power serics method. A similar procedure is
employed here to derive the thermoelasticity solution for a doubly-curved cross-ply lami-
nate.

The laminate under consideration consists of N layers of a unidirectionally reinforced
material (Fig. I) with each layer taken to be macroscopically homogeneous and orthotropic.
The radii of curvature of the middle surface in the 8,- and 8,-directions, denoted by R, and

Fig. 1. Doubly-curved laminated panel.
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R, (= R,+ Ry). are taken to be constant. The coordinate R represents the radius of
curvature in the #,-direction of an arbitrary point in the shell; thus R = R, if the point lies
on the middle surface. The middle surface of the doubly-curved panel is assumed to have
a Euclidean geometry. i.e. (ds)” = (R, df.)"+(R,d#,)". It is important to mention that
this metric equation leads to an approximate formulation in the case of shallow doubly-
curved surfaces. Hereafter, coordinates (R, 0..8,) will be also referred to as i-coordinates

(i=1273).

GOVERNING EQUATIONS

In the following analysis, the non-dimensional quantities
¥ = R‘R:‘ ry = R(;;!R:. i, ml'“‘:R: {‘}

are employed. Here ¢, is the component of displacement in the i-coordinate direction.
The stress—strain—temperature relations for each orthotropic lamina. written in con-
tracted notation (¢, =0, 0, =010 . ... Oy = 0,3, e1C.) ure

g =C (e, —2,T), (i.j=1-6), (2)
where C, denote the elastic moduli. x, are the cocflicients of thermal expansion, 7'is the

temperature rise from the stress-free state; the repeated index implies summation.
The equilibrium cquations are (Huang, 1990} :
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in which a comma denotes differentiation.
The strain -displacement relationships are
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By substituting egns (2) and (4) into eqn (3), the equilibrium equations become
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Cy+Cas Cis Css
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]

in which the quantities ¢/ are defined by

o =Cya,T, (i,j=123). ¥

THERMOELASTIC ANALYSIS

The laminate is taken to be simply supported in such a manner that all edges are fixed
against tangential displacements but remain free to translate in the normal (in-plane)
direction, in which case:

at 2=0,2®2: ll|=U3=0':2=

0
at 03=0,203: u,=u3=0’,3=0. (8)

Since most loadings can be represented in Fourier series form, the boundary conditions
for the inner (r = r;) and outer (r = r,) lateral surfaces are expressed as:

at r=r: @, =qysinalysinfily,, o,, = gcos20,sin fi0,
a3 = q;sin ad; cos f0,;
at r=r,: o, =¢q,sinab,;sin f0,, o, = q,,cos 20,sin 0,

0,3 = q3,5in a0, cos B0, C))

where 2 = mn/(20,) and § = mn/(2@;), with m and n considered arbitrary. Similarly, the
temperature variation is described by
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T = T (r)sin 28.sin f8,. (ih)
The displacements are taken in the form:

u(r.0,.8;) = U,(r)sin 28, sin f6;.

ux(r,8,.0,) = U.(r) cos 28, sin f6,,

us(r.0,.65) = Uy{r)sin 28, cos §6;. (n
The assumed displacement field (11) satisfies all of the edge conditions (8).

By substituting eqns (11) into eqns (5). the partial differential equations are reduced
to the following ordinary differential equations in the variable r:

. : G ; )
C||r(rU’|),‘+‘[C[|F]r(.' 1 + [“ng““x.chh+ (."h +C1] —2C:\)F"' (C;_;-I—*/}"C;g)(f)‘:'(f'.

—[(C 1+ C)IrU s —a[ = Cyy = Cha+(Ci2 = Co) AU = [(C 4+ Cs)ArU
~BUC 11—~ C1)F = (Coy+ Cs) (AU, = F(r)
[ Cry4+ Co)Ir U +2[Cay 4 Cop +(Cay + C o)A U,
+ Coor(rU) +[CooFIrU s = [Cro +2°Cos 4+ Coof + 2 C (AU
~ [ Cyy + Co)U, = Glr)
[BC 11+ Cs)FIrU + BUC  + Cs)F+(Cri+ Co AU,
—[2B(Cas+ C)FIU L+ Coar(rUn) +[CysFr U
[P C o+ CoF+(Cos + B C AU = Hy  (12)
in which ( )" = d( )/dr, and
r+ry
Fry=rT 2, +rT/(Z, =) +rT/F(Z,~L))
G(ry=wT\Z,, H(r)= ffrT,Z,
L =Ciu, (hj=1,2,3). (13)

F=

The value of ry, the difference of the radii of curvature in the 0.~ and #,-dircctions,
will dictate the form of solution of the differential eqns (12).

Case (1) : {r/ry] < 1.
By letting

Wi(r)=Udlr)., Win=rUiln=rWin, (=123 (14)
eqns (12) can be written in the form:
rWir) = AW, (r)+B(r). (i,j=1-6). (15)

If all the coefficients A, (r) arc analytic at r = 0, then there exists a set of homogencous
solutions of the above equations, namely (Ince, 1956 ; Hartman, 1964):

Wiry=rvin, {(i=1-6). (16}

where s is a certain constant, and ¥ (r) is analytic at the origin.
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Note that the expressions enclosed in the brackets of eqns (12) are analyticat r =0,
as is each function 4,,(r) in eqns (15). Therefore, at least one homogeneous solution of eqns
{12) can be represented in the general form:

x

[Ul(r)~ UZ(’)‘ (]}(r)] = rp Z [am.- bmw Cm]rm' (17)

m=0,1,2

Substituting (17) into the homogeneous form of (12), and equating the coefficients of the
smallest power in each of the resulting equations, leads to the following system of equations:

(Ci1p* =2 Cos—C22)ag+2[Caz+ Coe —p(C 12+ Cos)lby = 0
2[Ca:+ Cos+p(Cr2+ Coa)lag+(Coep® =27 Cry— Coe)by = 0
{p:C55-1:C44}C0 =0- (18)

Nonzero values of the coefficients a,. b, and ¢, can exist only if the determinant of eqns
(18) is zero. The resulting equation is the indicial equation of the differential equations (12),
namely

(p2C55—1:C44)'(CHCﬂ6p4 +p2[:xI(C,:+Cm,)z—C”(ozzC;z-{-C,,(,)
_Cbb(a:C66+C22)] +C22C66(“2" i)z) =0. (19)

Six roots (counting multiplicity) arc expected from eqn (19). Upon substituting the indicial
roots p, back into cqns {I8), two arbitrary cocflicients can be expressed in terms of the
third, provided that onc is nonzero.

To avoid mathematical ditficultics, only those cases in which real roots of the indicial
cquations are distinct and do not difTer from cach other by an integer are considered. The
successive coctlicients a,,. b, and ¢, (m 2=1) in eqn (17) can be determined from the
recursion equations [see Huang and Tauchert (1991)).

The general homogencous solution of eqns (12), denoted by U%, U% and U, can be
written as

[U’:(f), Ug(r)s Uf;(r)} = Z eir”' i [ainnbim' cim]rm (20)
f=1 me0,1

where p; are the roots of the indicial eqn (19). The unknown coefficients ¢, are determined
from the traction conditions prescribed on the shell's lateral surfaces and the continuity
requirements for adjacent laminae.

Next, consider the particular solution of eqns (12). It is assumed that the right-hand
sides of eqns (12) can be expressed in the polynomial form :

x

[F().G. HOY =7 Y [fangu balr". @n

naf,1.2

Particular solutions U, U5 and U5 of eqns (12) are (Hildebrand, 1976) :

2

Wi U0 U =r* 3 [anbuci)r” (22)

=012

provided that p, is not equal to (s+n). :

Equating the coefficients of power r**" of eqns (12) to zero yields a sct of equations
for a,. b, and c,. from which the particular solutions can be obtained.

For an N-layer laminate, there are a total of 6V undetermined coeficients. These can
be determined by satisfying six surface traction conditions (involving &,,. 6,., 7,,), and
satisfying 6(NV — 1) interface continuity requirements for ¢, 6,5, 63, u,, 1, and us.
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Case (2): |rryl > 1.
Substitutionof p =t rand g = | (I +r,p) into eqns (12) gives for this case

C”p(pC'})'—'[(]Hﬁ]p('}+[~(‘_~;~1"(',,r,+(f,3+('|;~2(‘3v_)ﬁ—(C~.;-é-/i:C;,;)(ﬂ):]Ul
FUC+Clp U =2 = Coo = Con +(C L = Co) I+ [BC = Ce) plp U
—BlUC = Cop—(Cii+ Co)p) U = E(p)
—[1(C.;+CM)};)U’,+1{C33+CM,+((';‘+(I..)ﬂ](',+Cm‘p(p("'_‘)'—[Chhﬁ]p('}
~C+ 2 Co+ Cap+ B Coulp) U = [1(C o+ Co)p U = Glp)
—[BCH+Caplpl = BUC+ Csa)p +(Civ + Co(H) 10, = [(Coy + Cr) LS
FCssppU) = [CoplplUs = [ Coi+ CopH(Coa+°C ) U = Hp)., (23)

in which,
. Lo b,
['(l’): “Tl.x:|+p71(-‘—1'*s:)+ 7|/7(S,—E()
Iy
. [ -
(I(I’):-xplxzz- Hpy=pp T,Z. (24
I

The cocflicients within brackets in eqns (23) are analytic at p = 0, and the corresponding
power scrics expressions are convergent for [ryp| < 1 (el [riry] > 1).
The homogencous solutions ol (23) arc ot the form

) Up) Uil = p" Y b clp™. (25)

meo-y 2

Conscquently, the homogencous solutions of eqns (12) can be expressed as

’

[y U Usin) =r? Z {t bl ™. (26)

mo=12

Substituting eqns (26) into eqns (12), and setting the coeflicients of the highest power (r”)
equal to zero, yiclds the following equations:
[Cl 1P(P+ 1) ‘I:Crm h /FCS\' ~C+C=Csy — 2C,,—-C, 1](14)
+ 21 =p(Cra+Co) = Cra+ Coa +Coi+ Cuulhy
+/‘[—p((v11+c'§5)—(‘|§+C':\+CVXK+CV55]C() = 0
Cl[[?(Cl 2 + C'm.) + (.3: + (v: y 2(},,,[(“,
FCop(p+ 1) =27 Coy = 7C 1, = 2C )by — 2 Cay + Cugdey = 0
/‘[/’((‘1 3 +C‘55) + (.: s (‘\\ +2(‘4$]ll|]
—fHC+ Codhy, +{Cosplp+ 1) — 27 C g _If:C: Jeo =00 (27)
The nonvanishing coctlicients «,. b, and ¢, can exist only if the determinant of eqns
(27) is zero. A closed form solution to the sixth-order determinant equation is avatlable
(see Appendix). The successive cocfhicients «,,. b, and ¢, (m 2 1) can be obtained by

equating the coctlicients of power (#7 ") to zero. The resulting general homogeneous
solutions can be written as:
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k] b
[AO.U). U = L er” Y [Gum b Comlr ™™ (28)
e m=01

It is presumed that the right-hand sides of eqns (12) can be expressed by the following
polynomials:

[FM.G.HD =r" Y [fugaha)r ™ (29)
n=0,1.2
The particular solution takes the form
(3. U UM} =r* Y anbacdr™” (30)
a=01.2

if roots p, of the indicial equation are not equal to (g —n). Coefficients a,. &, and ¢, can be
determined by the procedure described earlier.

In the case of a spherical panel (a special class of doubly-curved shells) r, is equal to
zero. and eqns (12) reduce to a system of equi-dimensional (or Cauchy-Euler) differential
equations. The homogeneous solutions (28) then take the form

[U';("L U};(I’), U'}(f')] = Z L’i”"lams bm« ci(l]' (31)

i=i

NUMERICAL EXAMPLES

The clasticity sotution derived above has been used to calculate the response of
graphite/epoxy doubly-curved pancls having dimensions £ = 0.05R, and ©@,=0, =
0.25. Three-layer regular cross-ply laminates with fiber arrangement [0°/90°/0°] arc con-
sidered. The thermoelastic properties of an orthotropic lamina with fiber reinforcement
in the 2-direction are taken to be:

El = 10.360. E: = ISIIEO, E; = lO3E0,
G|2 = 7.!759. G“ = 23950, 633 = 7.!7E9.
Vap = 0.28, Viy = 0.28, Vi3 = 0.28,

oy = 22.5&0. Xy = 0.02(10, €Ay == 22.510,

in which standard notation has been employed, and where £, and =z, are reference values.
First, consider the response of a saddle-shape panel for which Ry = —2R,, subject to
the surface tractions described by eqns (9), with ¢ =¢ . =9/, gi=Gro = ¢35 = ¢3, =0
and m = n = |. Table 1 illustrates the convergence rate of the power series in eqns (20) for
this example. It is scen that at least 80 terms must be retained in (20) in order to obtain a
relatively accurate value of the center deflection u,(1, @5, ©,). The center deflection (i)

Table 1. Convergence rate of power scries for
clasticity sofution.,
(h=005R,. ©,=0,=025 R, = —2R,)

u,(1,9,,0;)

No. of terms
(49/Ey)
60 0.13872
70 -(.22832
80 0.50417
90 0.50348

100 0.50348
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Fig. 2. Reponse of a three-layer doubly-curved laminate with /= 0.05R,, ©, =0, =025,

R,= —2R..
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Fig. 3. Thermoclastic response of a three-luyer spherical laminate with h = 0.05R,,0, = ©, = 0.25,
R, =R,

and stress (014, 041, 633 and a,) distributions in the thickness direction, found using 90
terms in the power serics, are shown in Fig. 2(a)-(c).

Next, consider the thermoelastic response of a spherical laminate (R; = R,) to the
temperature variation

T(R,02.03) = T| Sin(n02/2@3) sin (TE()]/Z@J).

The calculated. center deflection and stress (g,,,06;;) distributions through the laminate
thickness are shown in Fig. 3(a)-(c), respectively.

CONCLUDING REMARKS

The power serics method has been used to construct an exact three-dimensional
thermoelasticity solution for a doubly-curved cross-ply panel. Solutions such as this have
value as benchmarks for verifying mathematical procedures leading to approximate solu-
tions, and are useful for assessing the validity of laminated shell theories. A comparison of
results obtained using a recently developed shear-deformation shell theory, with those
based upon the present thermoelasticity formulation, will be reported in the near future.
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APPENDIX: SOLUTION TO THE CHARACTERISTIC EQUATION OF EQNS (27)

Let x = ptp+ 1) and rewrite eqns (27) in the following form:

Cox+k,, —HC s+ Codptk,ys —BC+Coaptk, ] (u n‘f
UC,+Co)p+ky, Coax+ks; k.. h,r =40
/i(C,\+(‘§§)[7+kn ks Coxvtha Cy L0

Sctting the determinant of the above set of equations to zero gives:
et e e vte, =0, (AD)
in which
= CCaChn
o= CoCokn+ ChConk oo+ CoiCank 217 Cod Ca+ C) +7CACH+C ),
= (‘HI\'_-;k\\+(.nk1|/\'1:+Ctyhk|lkll—(‘nk§!_ka“k:l“(qrm/\'nl"l;“:1/‘((‘|:+(‘nh)((‘1\*(‘u)kg\
+1:((.1.‘+(‘hh):k:|+":((‘l|+(“‘):k.‘2‘
Cy 7 /\'1|k;:k\\+k:\k|:ku+k;tkt\,":| —kllk::\_kllk.'lkH-k.'lkl‘k\l-

The standard solution of egn (A1) is available (Shelby, 1968). The root p can be obtiined by solving the
quadratic cquation p(p + 1) = x.



